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The nature of a shear flow over a wavy boundary of small amplitude is investi- 
gated. It is found that if the viscosity is small, the nature of the flow is highly 
dependent on the wave amplitude. If the wave amplitude is truly infinitesimal, 
the flow is described by the Orr-Sommerfeld equation and in the neighbourhood 
of the critical layer viscous stresses are important even in the limit of vanishing 
viscosity. However, if the wave is sufficiently large, viscous stresses may be 
neglected even in the critical layer. An approximate solution of the inviscid 
equations of motion is obtained to describe the flow over a small but finite wave 
in the limit of infinite Reynolds number. 

1. Introduction 
The purpose of this note is to examine the two-dimensional laminar shear flow 

of a nearly inviscid fluid over a boundary that has the form of a small amplitude 
periodic travelling wave. In his paper concerning the generation of surface waves, 
Miles (1957) pointed out the dominant role played by the dynamics of the critical 
layer in which the shear flow velocity is nearly equal to the wave propagation 
velocity. In  his development Miles proposed to determine the nature of the flow 
in the limits of zero wave amplitude and infinite Reynolds number, where the 
limits are taken in that order. As a consequence of this limiting procedure, the 
problem was first reduced to solving the Orr-Sommerfeld equation and then, 
upon neglecting viscosity, to solving the Rayleigh equation. But as is well known 
from hydrodynamic stability theory, except in certain special cases, this equation 
has solutions which are singular at the critical layer height and, in fact, the 
appropriate condition for matching the solutions on each side of the critical layer 
cannot be found from Rayleigh’s equation alone. Making use of well-known 
asymptotic solutions of the full Orr-Sommerfeld equation, Miles identified the 
correct solution to the inviscid equation and thereby determined such important 
quantities as the pressure work done on the wavy boundary. 

Since the results of the Miles theory are sensitively dependent on the manner 
in which the singular solutions of the Rayleigh equation are matched across the 
critical layer, it is of at least academic interest to examine this point in detail. 

t Present address : Scripps Institution of Oceanography, La Jolla. 
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There is no doubt that the solution given by Miles is the correct one in the joint 
limits of infinitesimal wave amplitude and vanishing viscosity taken in that 
order. However, it is reasonable to question the importance of the order in which 
these limits are taken and it is to this point that the present work is addressed.? 
In  what follows it will be shown that the singularity found in the solution of 
Rayleigh’s equation is not a consequence solely of neglecting the viscous terms 
in the full equation of motion, but rather, of neglecting both non-linear and 
viscous terms. Consequently, by retaining certain non-linear terms in the neigh- 
bourhood of the critical layer it is possible to construct an approximate solution 
of the inviscid equations in which the velocity is everywhere continuous and 
bounded. This solution would presumably apply to the shear flow over a wave of 
sufficient amplitude that inertial and pressure forces dominate over viscous 
stresses everywhere including the critical layer. 

For the purposes of analysis it is convenient to adopt a dimensionless co- 
ordinate system which translates at  the wave propagation velocity with the 
y-axis directed upward and the x-axis horizontally. In  this reference frame the 
motion is steady and the dimensionless horizontal velocity, u, is positive above 
the critical layer and negative below, while the wavy surface is determined by 
y = ys = ~[(z), where 6 is considered to be a small parameter. 

For flows in which the viscous stresses are everywhere negligible the equations 
of motion can be reduced to the statement that the vortioity, w ,  is constant along 
every streamline. Furthermore, since the flow is incompressible, the velocity 
field may be described by a stream function, 9. Unfortunately, it is not possible 
to state the relationship between w and $ in functional form because there is not 
a one-to-one correspondence between streamlines and the value of the stream 
function. This is so because the stream function has a minimum value, say @ = 0, 
in the critical layer and $ > 0 may correspond to two different streamlines, one 
on either side of the critical layer, along which the vorticity has different values. 
This difficulty may be overcome by introducing the co-ordinates ( E ,  q) where 

= 2 and q, which is constant along a streamline, is defined implicitly by 

This definition ensures that there is a unique correspondence between streamlines 
and values of y. The co-ordinate q is a measure of the mean elevation of the stream- 
line; if the flow is parallel q = y. The characteristic parameters used in non- 
dimensionalization are chosen so that W ( 0 )  = - W”(0) = 1; the form of W 
determines the shape of the mean velocity profile. 

The equation of motion may be written as 

t I have recently learned that Prof. D. J. Benney and Dr Bergeron have recently com- 
pleted an independent investigation of this point and that their results are to be published 
in Studies in Applied Mathematics. 



High Reynolds number flow 

In  terms of the co-ordinates ( 6 , ~ )  the elevation of a streamline is h, where 

Y = .rr+h(&r), 
the velocity components are 

2)=  _ _ -  Wht W u=- 
l+h,’ 1+ha 

and the equation of motion is 

339 

The boundary conditions on h are 

h -+ 0 as 7 + 00 and h(6, vS) = eC(6). (3) 

Anticipating the method of analysis, the flow is divided into the five regions 
which are sketched in figure 1. Regions I and V, which will be referred to as 
‘outer’ regions, are those parts of the flow in which ltayleigh’s equation pertains. 
Regions I1 and IV are ‘inner’ regions in which non-linear effects are important 
even as e tends t o  zero. Region I11 is that portion of the flow in which the stream- 
lines are closed. Regions I and I1 and regions I V  and V are, of course, overlapping 
and will be matched together following the familiar technique of inner and outer 

22-2 
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expansions. Then the composite regions making up the open streamline flow 
above and below the critical layer will be joined to the closed streamline region, 
thereby completing the analysis. 

2. Open streamline regions 
In this section the open streamline flow in regions I, 11, IV and V is examined. 

While the solutions on each side of the closed streamline region must be con- 
sidered separately, they will be obtained following nearly parallel developments. 
In  the following section these solutions will be joined to the flow in region 111. 

In the outer regions I and V the streamline elevation is expanded 

h = sH(') + O ( 8 )  

and when this is substituted into (2) and terms of O(E)  are collected it is seen that 

H$ + H g  + 2( W'/  W )  H f )  = 0. (4) 

Seeking a solution by the method of separation of variables, it is found that in 
the outer regions 

(5) h = 6 C (nAln54 + nA,nA) sin ant+ (nB1nh + nB2nAJ cos a n t ,  
n 

where n#l and n$2 are solutions of 

which is recognized as a variant of the Rayleigh equation. The constants A and B 
for region i cannot, at this stage, be related to those in the solution for region V, 
but the boundary condition that h + 0 as 7 -+ 00 determines the ratios ,A:/,Aib 
and ,BiI,BL while the boundary condition on the wavy surface determines the 
sums lAx + lAx and lBx + 2BT, 

While the functions qi cannot, in general, be expressed in terms of known func- 
tions, it suffices for the purposes of this work to consider their asymptotic be- 
haviour as 7 + 0. If we let represent the solution which is regular around 
7 = 0, it is possible to show by basic techniques that 

where, because interest is restricted to the real domain, the definition 

In(-%) = In(%) 
is invoked. 

The order of magnitude expansion which led to (4) is valid only so long as 23') 
and all of its derivatives are of O(1) and from the asymptotic behaviour of q52 
as 7 + 0 it is clear that this restriction is violated near the critical layer. If it is 
argued that the large gradients of velocity associated with this behaviour will 
lead to important viscous stresses, then the techniques used to treat the Orr- 
Sommerfeld equation in the limit of infinite Reynolds number can be used to 
find a viscous solution which can be matched to the solutions which are valid in 
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the outer regions. However, the point of view taken here is that if the viscosity is 
sufficiently small then viscous stresses may remain unimportant and the singu- 
larity in the outer solutions may be ascribed to the neglect of non-linear effects 
and may be overcome by matching the outer regions to inner regions in which 
certain non-linear terms are retained in the equation of motion. 

In  order to arrive at  the appropriate equation of motion in the inner regions I1 
and IV it is necessary to rescale both h and the length scale of the co-ordinate 7 
according to h = dBQ) (t, f Z )  + O(&), 

h 7 = 6-37, 
w = €-+w = r^-€+@p+O(€).  
A 

Substituting these forms into ( 2 )  and collecting terms of the same magnitude 
leads to the appropriate equation for the inner regions 

Fortunately, this non-linear equation is essentially a first-order ordinary differen- 
tial equation for + 1 and is easily solved to yield 

a;) + 1 = S${+ +f(E)}-,, 
where the positive root is implied, S may be either ? 1 and f(6) is arbitrary. 
Expressing $ in terms of @, this relation may be integrated and it is found that 
in the inner regions 

where g(5) is an arbitrary function which is, a t  most, O ( d ) .  
Turning now to the problem of matching the inner and outer solutions it 

becomes necessary to distinguish between the h,, the solution valid above the 
closed streamline region, and h, which pertains below. I n  each open streamline 
region the arbitrary functions f and g plus the sign S must be chosen such that, 
to O(E) ,  the outer expansion of the inner solution is identical to the inner expan- 
sion of the outer solution. From the asymptotic behaviour of $(r) given in (7) 
it is seen that the inner representation of the outer solution is 

and P(6) = I: nA,sina,5+nBzcosan5 
n 

are, of course, different above and below the critical layer. Similarly, the outer 
representation of the inner solution given in (9) is 
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Clearly a match can be achieved only if X = sign (7)) that is + 1 for h,  and - 1 
for 4. With this established, it is evident that the two expressions are identical if 

f =  2F, g(c)  = -s lns$f+s{ln2-1)~f+~G. (10) 

Thus in each of the composite open streamline regions the functions f and g are 
determined once the corresponding functions F and G are known. Further, as 
mentioned earlier, the boundary condition at infinity places a constraint on F, 
and G, while the condition at the wavy surface provides a constraint on l$ and G,. 
It remains, then, to relate the solution valid above the critical layer to that valid 
below the critical layer. In  fact, is it only now that it becomes clear why there 
must be a special closed streamline region, for until the matching was con- 
sidered it was not clear that a single ‘inner’ region would not adequately describe 
the neighbourhood of the critical layer. While the inability to achieve a satisfac- 
tory match with a single inner region is, in itself, sufficient evidence that there 
must be yet another region in which the inner scaling is inappropriate, the 
reason that the ‘inner’ scaling fails can be seen by noting that ht becomes large 
as q2 +f becomes small, as it must near the critical streamline 0 = 0. 

3. The closed streamline region 

co-ordinates x and y in which the equation of motion (1) is 
In the closed streamline region it is convenient to return to the Cartesian 

lcryy + +zz = dWId7- 

In order to properly join this region to the open streamline regions on either side 
it is necessary to require that the bounding streamline, +,,, coincides with the 
streamlines which bound regions I1 and IV and, in addition, that the pressure be 
continuous across this boundary. In  the absence of viscous stresses these two 
conditions imply that the velocity is continuous across lc/o. 

The appropriate choice for the vorticity distribution, specified by W’(y), is 
not obvious and, in fact, if the flow is truly steady and inviscid there is no criterion 
by which a particular choice can be singled out. If the entire history of the flow 
were known the vorticity distribution would, of course, be determined by the 
initial distribution, but in order to determine the history of the flow it would 
be necessary to solve avery difficult non-linear, initial-value problem. If, however, 
the effects of a small but finite viscosity are taken into account it is found that 
there is an unambiguous choice for the function W’. This point was considered 
by Batchelor (1956) who showed that regardless of how small the viscosity be- 
comes the viscous diffusion of vorticity will eventually lead to a distribution of 
vorticity which is uniform throughout the region except in a thin layer along the 
boundary. It should be emphasized that taking viscosity into account in this 
manner does not mean that the original objective of seeking a flow in which 
viscous stresses are negligible has been abandoned but rather that, in regions of 
closed streamline flow, the effects of viscosity cannot be ignored even when the 
viscous stresses are vanishingly small. 

If the constant vorticity in region I11 is given the value Q, (1)  is seen to  admit 
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the solution 

$=In 7 2 = frQ{y2 + a,y + Z (,al sinh any + ,a2 cosh a, y )  sin a,z 

+Z (,blsinha,y+,b2cosha,y) C O S ~ , ~ } .  

Further, since it is expected that throughout this region y = O(d), the hyperbolic 
functions may be expanded in powers of y up to y2 and the resulting quadratic 
equation solved for 

where 29 = &{ao + 2a,(,ul sin a,x + ,bl cos a,x)}, 
9- = C, ,a2 sin a,x + ,b2 cos a,x. 

The horizontal velocity is given by 

u = f. Q{P + (1 - a$--") ( 7 2  - F)}k (12) 

Having now obtained a solution describing the flow in the closed streamline 
region, all that remains is to join it to the solutions for the open streamline 
regions which were found in the previous section. This step involves requiring 
that ZG and h evaluated on the dividing streamline $o must be equal in the open 
and closed streamline regions. Equating u as determined from (8) to that given 
by (12) leads to 

W g = - W I , = W o ,  f ~ = - f l - f ,  W i =  IminimumfI 
h A A A 

and (13) 

where the subscript zero indicates evaluation on $o and the superscripts u and 1 
refer to the upper and lower open streamline regions respectively. In  equating h 
as given by (9) and (11) it is convenient to recall that fi = W + ~h$l$~ and to re- 
write (9) in terms of $. Then noting from (13) that $-- = O(E), the continuity 
of h requires 

h o = - 9 - 7  ,fSst(l/Q)*= f k k 8  - ! q , + ~ { f r $ ~ %  - ~ f l n ( W , + ~ ) } + g ,  (14) 

where S = 1, g = gu along the upper portion of $, and S = - 1, g = d along the 
lower portion. 

It is clear that, once !2 is determined, (13) and (14) relatef and g in the upper 
and lower 'inner' regions and these functions are, in turn, related to P and G 
of the 'outer ' regions by (10). Finally, the boundary condition at the wavy surface 
and the limiting condition as !q + 00 provide the additional restraints necessary 
to completely specify the solution. However, in order to determine !2 it is neces- 
sary to consider the viscous diffusion of vorticity into and out of the closed 
streamline region. 

Across the bounding streamline 9, the tangential velocity is continuous but 
according to the inviscid theory discussed above there is a jump in the vorticity 
of O(e4). Along the upper half of $, the vorticity in the open streamline region 
is 1 - B*@,, along thelower half it  is 1 + E*$, andinside the closed streamline region 

uo = e"$f +f}+ = ! 2 2 ( 9 2 +  (1 - +F") (7; - F)}+ EE E**(X), 

A 
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it is Q. This jump in vorticity will, in the limit of vanishing viscosity, be distri- 
buted across a thin boundary layer along Po and, unless C2 has adjusted to the 
proper value there will be B non-zero net transport into the closed streamline 
region thus precluding a truly steady flow. 

In order to determine the value of C2 associated with a steady state it is 
necessary to examine the boundary layer along $o. For this purpose it is con- 
venient to introduce the co-ordinate 1 which measures distance along lc/o passing 
around the closed streamline region in the same direction as the flow. Introducing 
the usual boundary-layer approximations and making use of the Von Mises 
transformation the boundary layer may be described by 

q ( g ) , = ; Y & [ q $ ] )  

where w is the vorticity, q is the dimensionless velocity directed along @ = con- 
stant and R is the Reynolds number which is large. While the vorticity varies 
significantly across the boundary layer, if the Reynolds number is large, the 
velocity q does not. T,he correct scaling in the boundary layer is $ = s-%Hllp 
and q = dQ(1) +dR-?~&(l, $), where &&(I) is the ‘free-stream’ velocity pre- 
dicted by the inviscid calculation. Substituting this into the boundary-layer 
equation and assuming dR- f  < 1 leads to 

If we now consider integrating (15) along the two paths Xl and S, depicted in 
figure 2, it is clear that, owing to the periodicity of the flow, the contribution 
from the vertical sections of S, will vanish and we may write 

and, since awl@ vanishes outside the boundary layer, this implies 

$&Qwds = Qwds. 
8% 

If 8, is placed inside the inviscid core of the closed stream, the value of w is 0 
and similarly if S, is placed outside the boundary layer the vorticity along the 
upper portion is 1 - e*Wo and along the lower portion w = 1 +egWo. From (13) 
and (14) it is clear that, to O(E),  the integral J Q d s  along the upper segment of 8, 
is equal to that along the lower segment and, since the boundary layer is thin, 
is equal to one half the integral around 8,. Consequently 

A A 

A a = & ( 1 - s 4 W , ) + ~ ( 1 + s t + o )  = 1, 

that is the vorticity in the closed streamline region is the same as would exist on 
7 = 0 in the absence of any wave-like disturbance. 

With the value of Q determined, it is now possible to simplify (13) and (14) to 

EL{$$ +f}& = {5P+ (7; - F)p, 
- 9 = s{*jln ($o  + J$: +jl)  - ~+ci i ,  ,/I$; +fl) - g,  

(16) 

(17) 
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where, in arriving at (16), notice has been taken of the fact that 9" = O(6).  
Equations (16) and (17) provide the final relationships required to complete the 
solution. 

L 

The appropriate condition for relating the upper and lower ' outer ' solutions 
is now easily seen. From (1  7) it follows that gu = 9.E = g while in (13) it has already 
been noted that f" = f1 = f. Returning to Q 2 in which the 'outer' and 'inner' 
solutions were matched, it follows from (10) that 

F U = F z = & f  and GU=@=g/e+~j?lns-(ln2-1)+f.  

This result is to be contrasted with the equivalent matching condition obtained 
from the Orr-Sommerfeld equation which implies a jump in the phase of u across 
the critical layer which differs from 180'. 

4. Summary 
In the foregoing analysis an attempt has been made to investigate the nature 

of the critical layer associated with a wave-like disturbance in a high Reynolds 
number shear flow. It is well known that if interest is restricted to truly infinitesi- 
mal disturbances, the critical layer cannot be described without taking into 
account viscous stresses which, no matter how small the viscosity, are always 
important in that region. However, this analysis shows that if allowance is made 
for disturbances of finite amplitude, the critical layer need not be associated 
with non-vanishing viscous stresses and, in fact, as the Reynolds number of the 
shear flow approaches infinity the disturbance amplitude at which viscous 
stresses become negligible approaches zero. 

The minimum amplitude for which this analysis can apply is determined 
primarily by the boundary layer which surrounds the closed streamline region. 
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In  the previous section, the thickness of this boundary layer was seen to  be 
O(e-iR-4j and for the analysis to be valid it is necessary that the boundary layer 
be thin compared with O(&) which is the dimension of the closed streamline 
region. Hence the inviscid model is valid only if 

1 9 R-Be-8, 

which is much more restrictive than theassumption made insolving the boundary- 
layer equations. In  terms of dimensional variables this restriction is 

a 9 (vaU:)j/U6, 

where a is the wave amplitude and Uh and U," are the first and second derivatives 
of the mean velocity evaluated at  the critical layer. 

Admittedly a completely inviscid, steady-state model of shear flow over a wavy 
boundary must be regarded as of little more than academic interest owing to the 
fact that it cannot explain the generation of waves. To show this we need only 
consider the spatially averaged horizontal momentum equation for steady 
inviscid flow : a -  a -  a -  -u2+-uv+-p = 0. ax ay ax 

By hypothesis the flow is periodic in x and the velocity is everywhere continuous. 
As a result, the derivatives of 2 and Fmust vanish, the Reynolds stress is constant 
with height and, therefore, since far above the wave u and v vanish, the Reynolds 
stress is everywhere zero. Consequently, any theory which seeks to explain the 
generation of waves by a laminar shear flow must take into account viscous 
stresses. 

While the complete neglect of viscous forces makes the inviscid model unsatis- 
factory as a description of real flows, the analysis does serve t o  establish two 
very important points. First, the inclusion of viscous stresses is not essential in 
arriving at  a mathematically satisfactory description of wave-like perturbations 
to a shear flow. Second, the inclusion of non-linear terms in the 'perturbation' 
equations may lead to results which are significantly different from those 
obtained from a strictly linear model, particularly when the Reynolds number 
of the flow is large. These conclusions would appear to have important conse- 
quences in the theory of hydrodynamic stability which are deserving of further 
study. 
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